EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.


/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

1 / G* =  = [          ] ω   / T] / c [    [x,t] ] [-1] = 


G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



quantização de Landau na mecânica quântica é a quantização das órbitas cíclotron de partículas carregadas em campos magnéticos. Como resultado, as partículas carregadas somente podem ocupar órbitas com valores de energia discretos, denominados níveis de Landau.[1] Os níveis de Landau são degenerados, com o número de elétrons por nível diretamente proporcional à intensidade do campo magnético aplicado. A quantização de Landau é diretamente responsável por oscilações nas propriedades eletrônicas de materiais em função do campo magnético aplicado. Esta quantização leva o nome do o físico soviético Lev Landau.[2]

Dedução

Considere um sistema em duas dimensões de partículas não-interagentes com carga q e spin S confinadas em uma área A = LxLy no plano xy.

Aplica-se um campo magnético uniforme  ao longo do eixo z. Em unidades CGS, o hamiltoniano do sistema é

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Aqui  é o operador momento canônico e Â é o potencial vetor eletromagnético, o qual é relacionado ao campo magnético por

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Existe uma liberdade na escolha do calibre para o potencial vetor para um dado campo magnético. O hamiltoniano é invariante sob o calibre, o que significa que a adição do gradiente de um campo escalar ao A altera a fase global da função de onda por um valor correspondente ao campo escalar. Porém as propriedades físicas não são influenciadas pela escolha específica do calibre. Para simplificar os cálculos, vamos adotar o calibre de Landau, o qual diz que

onde B=|B| e  é a componente x do operador posição.

Neste calibre, o hamiltoniano passa a ser escrito como

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

O operador  comuta com este hamiltoniano, desde que o operador  desaparece após a escolha do calibre. Então o operador  pode ser substituído pelo seu autovalor hky .

O hamiltoniano também pode ser escrito em uma maneira mais simples após notar que a frequência de cíclotron é ωc = qB/mc, assim

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Este é exatamente o hamiltoniano do oscilador harmônico quântico, exceto com o mínimo do potencial deslocado na coordenada espacial por

x0 = hky/m?c .

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Para encontrar as energias, note que ao transladar o potencial do oscilador harmônico as energias não são alteradas. As energias do sistema são idênticas aquelas padrão do oscilador harmônico quântico,

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

A energia não depende do número quântico ky, então haverá degenerescência.

Para as funções de ondas, recordamos que  comuta com o hamiltoniano. Então a função de onda é dada pelo produto entre os autoestados do momento na direção y e os autoestados do oscilador harmônico  deslocados por um fator x0 na direção x:

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Em suma, o estado do elétron é caracterizado por dois números quânticos, n e ky .

Níveis de Landau

Cada conjunto de funções de onda com o mesmo valor de n é chamado de nível de Landau. Efeitos dos níveis de Landau são observados somente quando a energia térmica média é menor do que a separação entre os níveis de Landau, kT ≪ ħωc, o que significa que o sistema tem que estar definido a baixas temperaturas e campos magnéticos intensos. Cada nível de Landau é degenerado devido ao segundo número quântico ky, o qual pode assumir valores

,

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

onde N é um inteiro. Os valores permitidos para N são restritos pela condição de que o centro da força do oscilador, x0, deve fisicamente ser definida dentro do sistema . Isto leva ao seguinte alcance para N,

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Para partículas com carga q = Ze, o limite superior de N pode ser escrito de maneira mais simples como razão dos fluxos magnéticos,

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

onde F0 = h/2e o fluxo magnético quântico fundamental e F = BA é o fluxo através do sistema (com área A = LxLy).

Então, para partículas com spin S, o número máximo D de partículas por nível de Landau é

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

Os resultados acima informam apenas uma ideia aproximada dos efeitos de um sistema que é definido dentro de um espaço finito. Falando estritamente, a utilização da solução padrão do oscilador harmônico é apenas válida para sistemas sem limitações na direção -x. Se o tamanho Lx é finito, as condições de fronteiras nesta direção dão origem as condições de quantização não-padrão sobre o campo magnético, envolvendo (a princípio) ambas as soluções da equação de Hermite. O enchimento destes níveis com muitos elétrons ainda é [3] uma área de pesquisa muito ativa. Em geral, os níveis de Landau são observados em sistemas eletrônicos, onde Z=1 and S=1/2. Enquanto o campo magnético aumenta, mais e mais elétrons preenchem cada nível de Landau. A ocupação do nível de Landau mais energético varia de completamente preenchido a completamente vazio, resultando em oscilações da suscetibilidade magnética em função da intensidade do campo magnético (ver efeito de Haas–van Alphen e Shubnikov–de Haas effect).

Se o efeito Zeeman é considerado, cada nível de Landau é dividido em um par, um para o spin up do elétron e outro para spin down do elétron. Então a ocupação de cada spin no nível de Landau é apenas a razão entre os fluxos D = F/F0. O efeito Zeeman tem efeito significativo nos níveis de Landau já que suas escalas de energia são as mesmas, 2μBB = ħω . Entretanto, a energia de Fermi e a energia do estado fundamental se mantém mais ou menos da mesma forma do que em um sistema com muitos níveis cheios, uma vez que os pares divididos dos níveis de energia cancelam um ao outro quando somados.

Comentários

Postagens mais visitadas deste blog