EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.


/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

1 / G* =  = [          ] ω   / T] / c [    [x,t] ] [-1] = 


G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..




Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:

,

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.




Eletrodinâmica quântica (EDQ), ou QED, de Quantum electrodynamics, é uma teoria quântica de campos do eletromagnetismo. A EDQ descreve todos os fenômenos envolvendo partículas eletricamente carregadas interagindo por meio da força eletromagnética. Sua capacidade de predição de grandezas como o momento magnético anômalo do múon e o desvio de Lamb dos níveis de energia do hidrogênio a tornou uma teoria renomada.

História

A eletrodinâmica foi a evolução natural das teorias da antigamente denominada segunda quantização, isto é, quantização dos campos, ao ramo da eletrodinâmica.

As teorias de campo são necessariamente relativísticas, já que admitindo-se que haja partículas mensageiras na troca de energia e momento mediados pelo campo, essas mesmas partículas, a exemplo do fóton (que historicamente precedeu a descoberta das teorias de quantização do campo) devem se deslocar a velocidades próximas ou igual à da luz no vácuo (c = 299 792 458 m/s).

A primeira formulação da eletrodinâmica quântica é atribuída a Paul Dirac, que nos anos 1920 foi capaz de calcular o coeficiente de emissão espontânea do átomo.[1] Essa teoria se desenvolveu a partir dos trabalhos Sin-Itiro TomonagaJulian Schwinger e Richard Feynman. Pelos seus trabalhos, eles ganharam o prêmio Nobel de Física em 1965.

Desenvolvimento formal

A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:

/

G* =  = [          ] ω   / T]  / c [    [x,t] ]  = 

onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.






Comentários

Postagens mais visitadas deste blog